Origin-Destination Matrix Estimation Based on Microsimulation and Optimization

Christian Portilla*, Andrés Acosta*, Iván Sarmiento⁺, and Jairo Espinosa*

*Departamento de Energía Eléctrica y Automática †Departamento de Ingeniería Civil Universidad Nacional de Colombia, Medellín, Colombia Email: {crportil, afacostag, irsarmie, jespinov} @unal.edu.co

April 18th, 2018

Calibration of traffic scenarios

Assignment and estimation

Fig. 1. Assignment and estimation process

Fig. 2. Assignment and estimation process

Outline

- 1. User equilibrium
- 2. O/D matrix estimation
- 3. Results and discussion
- 4. Conclusions

1. User equilibrium

Every driver chooses a route for which the cost (usually the travel time) is minimal

Fig. 3. Simple traffic network

1. User equilibrium

Fig. 4. Urban traffic network in SUMO

Fig. 5. Possible routes in the case of study

$$R_{(O_1,D_1)} = \{r_1, r_2, r_3\}$$
(3)

$$R_{(O_2,D_2)} = \{r_4, r_5, r_6\}.$$
(4)

1. User equilibrium

Fig. 6. Assignment using the shortest path

Fig. 8. Dynamic User Equilibrium for a simple urban traffic network

$\dot{\boldsymbol{q}} = f(\boldsymbol{u})$ $\boldsymbol{u} = [V_{(O_1,D_1)}, V_{(O_1,D_2)}, V_{(O_2,D_1)}, V_{(O_2,D_2)}]^{\mathsf{T}}$ $\min_{\boldsymbol{u}} J(\boldsymbol{u}, \boldsymbol{q}, \hat{\boldsymbol{q}}) = \|\boldsymbol{q} - \hat{\boldsymbol{q}}\|_2$ subject to:

2. O/D matrix estimation

$$\dot{\boldsymbol{q}} = f(\boldsymbol{u}),$$

 $\boldsymbol{u}_{\min} \leq \boldsymbol{u} \leq \boldsymbol{u}_{\max},$ (6)

measured flow $\boldsymbol{q} = [q_{r_1}, q_{r_2}, q_{r_3} + q_{r_4}, q_{r_5}, q_{r_6}]^{\mathsf{T}}$ estimated flow $\hat{\boldsymbol{q}} = [\hat{q}_{r_1}, \hat{q}_{r_2}, \hat{q}_{r_3} + \hat{q}_{r_4}, \hat{q}_{r_5}, \hat{q}_{r_6}]^{\mathsf{T}}$

Fig. 9. Flow chart of the O/D estimation process

2. O/D matrix estimation

Fig. 10. Cost function obtained by varying $V_{(O_1,D_1)}$ and $V_{(O_2,D_2)}$, and keeping the other values of the O/D matrix as $V_{(O_1,D_2)} = V_{(O_2,D_1)} = 1000$

3. Results and discussion

TABLE I

REAL AND MEASURED TRIPS AND FLOWS FOR THE TEST CASE SCENARIO.

Variable	Real value	Measured value	Error (%)
$V_{(O_1,D_1)}$	1 200	1 158,9	3,42
$V_{(O_1,D_2)}$	1 000	1 045,7	4,57
$V_{(O_2,D_1)}$	1 000	998,5	-0,15
$V_{(O_2,D_2)}$	1 200	1 256,5	4,7
q_{r_1}	612	612	0
q_{r_2}	580	580	0
$q_{r_3} + q_{r_4}$	2 000	2 000	0
q_{r_5}	609	609	0
q_{r_6}	591	591	0

3. Results and discussion

$\begin{tabular}{l} TABLE \ II \\ Initial flows obtained with the measured O/D matrix \\ \end{tabular}$

Variable	Real value	Initial conditions	Error (%)
$V_{(O_1,D_1)}$	1 200	1 158,9	3,42
$V_{(O_1,D_2)}$	1 000	1 045,7	4,57
$V_{(O_2,D_1)}$	1 000	998,5	-0,15
$V_{(O_2,D_2)}$	1 200	1 256,5	4,7
q_{r_1}	612	567	-7,4
q_{r_2}	580	582	0,3
$q_{r_3} + q_{r_4}$	2 000	2041	2,1
q_{r_5}	609	609	0
q_{r_6}	591	648	9,6

3. Results and discussion

TABLE IIISolution obtained with the estimation method

Variable	Real value	Estimated value	Error (%)
$V_{(O_1,D_1)}$	1 200	1 198,3	0,1
$V_{(O_1, D_2)}$	1 000	1 042,0	4,2
$V_{(O_2,D_1)}$	1 000	958,6	4,2
$V_{(O_2, D_2)}$	1 200	1 208,9	0,7
q_{r_1}	612	608	0,6
q_{r_2}	580	583	0,5
$q_{r_3} + q_{r_4}$	2 000	2 000	0
q_{r_5}	609	609	0
q_{r_6}	591	600	1,5

4. Conclusions

- In this presentation, a method for estimating an O/D matrix based on microscopic simulation was described. This method consists in an optimization problem where the decision variables correspond to the trips comprising the O/D matrix, which is assumed to have a measurement error.
- This optimization iteratively runs a dynamic user equilibrium using the DUAITERATE tool found in the SUMO simulator, which implements the Gawron's Dynamic Traffic Assignment Model.
- The objective function tries to minimize the error between the flows obtained with the measured O/D matrix, and those obtained with the corrected O/D matrix.
- Simulation results showed the validity of the proposed method. Due to the dependence between the O/D matrix and the resulting traffic flows, it was difficult to consider measurement errors in the latter. Future improvements will evaluate these errors directly in the SUMO simulator.

ACKNOWLEDGMENT

Research supported by: COLCIENCIAS under the doctoral scholarship, convocation number 647 and a special acknowledgement to COLCIENCIAS project: Reducción de emisiones vehiculares Mediante el modelado y gestión óptima de tráfico en áreas metropolitanas - caso Medellín - Area Metropolitana Valle de Aburrá, código 111874558167, CT 049-2017. Universidad Nacional de Colombia Proyecto HERMES 25374.

Thank you.

REFERENCES

[1] M. Jha, G. Gopalan, A. Garms, B. Mahanti, T. Toledo, and M. BenAkiva, "Development and Calibration of a Large-Scale Microscopic Traffic Simulation Model," *Transportation Research Record: Journal of the Transportation Research Board*, vol. 1876, pp. 121–131, jan 2004.

[2] C. Gawron, "An Iterative Algorithm To Determine the Dynamic User Equilibrium in a Traffic Simulation Model," *International Journal of Modern Physics C*, vol. 9, no. 3, pp. 393–407, 1998.

[3] S. Peeta and A. K. Ziliaskopoulos, "Foundations of Dynamic Traffic Assignment: The Past, the Present and the Future," *Networks and Spatial Economics*, vol. 1, no. 3, pp. 233–265, 2001.

[4] A. Acosta, J. Espinosa, and J. Espinosa, "Developing Tools for Building Simulation Scenarios for SUMO Based on the SCRUM Methodology," in *Proceedings of the 3rd SUMO User Conference*. Berlin: Deutsches Zentrum f"ur Luft- und Raumfahrt e.V., 2015, pp. 23–35.

[5] T. Van den Boom and B. De Schutter, *Optimization in Systems and Control*. TU Delft, 2007.